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Abstract--This paper deals with natural convection in confined porous media, driven by cooperating 
thermal and solutal buoyancy forces. The physical model for the momentum conservation equation makes 
use of the B:6nkman extension of the classical Darcy equation, and the set of coupled equations is solved 
using a finite volume approach. The numerical simulations presented here span a wide range of the main 
parameters (the Rayleigh and Darcy numbers) in the domain of positive buoyancy numbers and for Le > 1. 
When possible, the results are compared with previous numerical data or existing scaling laws. The results 
are mainly analyzed in terms of the average heat and mass transfers at the walls of the enclosure. Although 
the mass transfer characteristics are fairly well predicted by the scale analysis, it is shown that convective 

heat transfer has a specific behavior in given ranges of the governing parameters. 

1. INTRODUCTION 

The analysis of convection heat transfer in porous 
media has been the subject of a very intense research 
activity over the pa st 30 years. The formulation of the 
macroscopic (averaged) conservation equations and 
the justification of the different terms usually 
accounted for in 1:he classical models developed in 
the bibliography (Brinkman, Forchheimer) is still a 
relevant problem. Concerning the determination of 
convective heat and mass transfer in fluid saturated 
porous matrices, Lhe published experimental, ana- 
lytical and numerical results represent an important 
bibliography: a rec, ent state of the art may be found 
in the book by Nield and Bejan [1]. 

In the field of :aatural convection, many studies 
are dealing with thermally driven flows, due to the 
importance of related industrial and technological 
applications (geothermal energy, fibrous insulating 
materials, some modes of assisted oil recuperation, 
etc.). In contrast, relatively little attention has been 
dedicated to the so-called double diffusive situations, 
where the saturating fluid consists of several con- 
stituents and where the density gradients inducing 
natural convection are due to coupled thermal and 
compositional effects. 

This configuration is however fully relevant to the 
modeling of heat, mass and momentum transfers in 
materials processing involving multicomponent mix- 
tures (alloy solidification, zone melting, etc.): a great 
majority of studies consider porous medium models 
to represent the fl~Jd flow in the solid-liquid region, 
the so-called mushy zone. An accurate description of 
the phenomena in this region is of primary import- 
ance, since the physical mechanisms which rule the 

development of the solid phase essentially take place 
in this multiphase zone. Up to now, comparisons 
between the existing numerical simulations and the 
experimental results show a qualitative agreement, but 
important quantitative differences are still subsisting. 

This work is concerned with the numerical simu- 
lation of thermosolutal natural convective flows in a 
porous medium. In a first stage, phase change is not 
accounted for, in order to focus primarily on the trans- 
port phenomena in such a medium. In the previous 
studies concerning thermosolutal natural convection, 
as it has been the case for thermal natural convection 
in porous media, mainly two configurations have been 
considered. The first situation concerns the horizontal 
porous layer, submitted to vertical temperature and 
concentration gradients. The first results on the onset 
of convective flows using linear stability analysis may 
be found in the work by Nield [2] and Taunton et 

al. [3]. More recently, this configuration has received 
some attention [4-12] in stability analyses, some of 
them taking account of heterogeneities of the porous 
matrix [4], of the anisotropy of the porous medium 
[10] or of inclined temperature and concentration 
gradients [11, 12]. Poulikakos [7] has studied the cri- 
terion of onset of double-diffusive convection using 
a Darcy-Brinkman model for describing momentum 
conservation in the porous medium: the results clearly 
show the influence of the Darcy number. Chen et al. 

[8] have also used the Brinkman and Forchheimer 
terms to consider nonlinear two-dimensional (2D), 
horizontally periodic, double-diffusive fingering con- 
vection. The stability boundaries which separate 
regions from different regime of convection are ident- 
ified. Murray and Chen [13] have experimentally con- 

1363 



1364 B. GOYEAU et al. 

H(L) 
Uc) 

NOMENCLATURE 

A aspect ratio of the enclosure, H/L 
c specific heat at constant pressure 

[J kg J K 1] 

C dimensional mass fraction 
D mass diffusivity [m 2 s J] 
Da Darcy number, K/H 2 
g intensity of gravity [m s -2] 
Grs solutal Grashof number based on H 

and on fluid properties, = 9flcAC 
HS /v: 

Gr, thermal Grashof number based on H 
and on fluid properties, = 9flvAT 
H3/v 2 
height (width) of the enclosure [m] 
unit vector in the horizontal (vertical) 
direction 

k thermal conductivity [W m ~ K -  1] 
K permeability of the porous medium 

[m 2] 
Le Lewis number: Sc/Pr 
N buoyancy ratio: Grs/GrT 
Nu average Nusselt number 

(dimensionless heat flux) 
P dimensionless pressure 
Pr Prandtl number, v/~ 
Rk ratio of thermal conductivities, km/kf 
Ra* porous thermal Rayleigh number, 

(GrTPrDa) 
Se Schmidt number, v/D 
Sh average Sherwood number 

(dimensionless mass flux) 
T dimensional temperature [K] 
u(w) horizontal (vert.) dimensionless 

component of velocity 
~" dimensionless velocity 
x(z) dimensionless coordinates, x*/H 

(z*/H). 

Greek symbols 
c~ thermal diffusivity [m 2 s -j] 
fit coefficient of volumetric expansion 

with temperature [K 1] 
fls coefficient of volumetric expansion 

with mass fraction 
AC concentration difference between 

plates, C~ - C2 
AT temperature difference between plates, 

Tj - T2 
A viscosity ratio Pee/P 

porosity of the porous medium 
/z dynamic viscosity of the fluid 

[kg m -1 s -I] 
#e~ viscosity in the Brinkman model 
v kinematic viscosity [m 2 s-  1] 
qb dimensionless concentration: 

( C -  (C2 + C,)/2)/AC 
p fluid density [kg m -3] 
a ratio of specific heats, (pC)m/(pc)f 
tO dimensionless temperature: 

( T -  (T2 + T~)/2)/AT. 

Subscripts 
0 reference (average value) 
1 hot side 
2 cold side 
f fluid 
H based on H 
m fluid-saturated porous medium 
S solutal 
T thermal. 

Superscript 
(*) indicates dimensional quantities, 

except in Ra*. 

firmed within 10% the critical thermal Rayleigh num- 
ber obtained by Nield [2]. Trevisan and Bejan [14] 
have determined analytically the mass transfer due to 
thermally driven flows at high Rayleigh numbers. 
Their numerical results and a scaling analysis allow 
us to conclude that mass transfer depends on different 
scaling laws, depending on the Lewis number. The 
transition between the Darcy and the Forchheimer 
regimes has also been documented. A recent study by 
Rosenberg and Spera [15] deals with the influence of 
the Rayleigh, Lewis and buoyancy numbers on the 
heat and mass transfer in steady and unsteady states, 
considering several types of initial conditions. Lately, 
Mamou et al. [16] compare an approximate analytical 
solution to numerical simulations for a shallow cavity 
with uniform heat and mass fluxes specified at the 
horizontal walls. The critical Rayleigh number is 

obtained as a function of the Lewis and buoyancy 
numbers. 

In the vertical configuration (horizontal tem- 
perature and concentration gradients), the first studies 
are concerned with the destabilization of com- 
positionally stratified layers [ 17-20]. Raptis et al. [21 ] 
present an analytical solution for the semi-infinite 
cavity. A few authors have studied the boundary layer 
flow [22-24], showing various regimes according to 
the value of the Lewis number and of the ratio of 
buoyancy forces. Trevisan and Bejan [25] have con- 
sidered a square cavity submitted to horizontal tem- 
perature and concentration gradients: a numerical 
study based on the Darcy model is compared to a 
scaling analysis, over a range of relatively moderate 
values of the parameters (0.1 ~< Le ~< 10, - 5  ~< N ~< 3 
and Ra* = 200 for N # 0). Recently, transient double 
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diffusive natural convection in a square enclosure has 
been investigated numerically [26, 271, for moderate 
buoyancy ratio and Lewis number. Other boundary 
conditions have been considered in this geometry [28- 
311. 

In the vertical c, onfiguration, all the above studies 
describe the momentum conservation in the porous 
medium using the Darcy model. Because our main 
objective is to study double diffusive natural con- 
vection in the context of solidification, where per- 
meability and porosity are not constant in space and 
time, the Darcy-Brinkman formulation is adopted in 
the present study. We first give a description of the 
problem, then the governing equations are recalled 
and the numerical method briefly outlined. The sec- 
tion presenting the numerical results is divided into 
two parts: one is dedicated to the analysis of mass 
transfer and the other to heat transfer. The influence 
of the main dimensionless parameters is considered, 
and special attention is given to the role of the Brink- 
man term in the Darcy model. 

2. PROBLEM DEFIN IT ION 

The present work refers to the study of natural 
convective flows in a porous cavity (height H, width 
L : aspect ratio A = H / L ) ,  saturated by a binary fluid 
(such as aqueous solutions, as in numerous exper- 
imental studies related to solidification processes). 
Horizontal tempe rature and concentration differences 
are specified betv~een the vertical walls (T, and Cl at 
the left wall, 7"2 and C2 at the right wall), and zero 
mass and heat fluxes are imposed at the horizontal 
walls. All the boundaries are impermeable. The binary 
fluid is assumed 1:o be Newtonian and to satisfy the 
Boussinesq approximation; the flow is incompressible, 
laminar, 2D and in the steady state. On the other 
hand, the porous medium is supposed to be isotropic, 
homogeneous and in thermodynamical equilibrium 
with the fluid. The Soret and Dufour effects are 
assumed to be negligible. The density variations upon 
temperature and concentration are described by the 
state equation: 

p = po[1 - - f i T ( T - -  T o ) - f l c ( C - C o ) ]  (1) 

where: 

= - -  L, Tj  a n d  = - P ; ( 2 )  

Using the following dimensionless variables: x = 
x * / H ,  z = z * / H ,  V = ~ '*H/v ,  t = t*v/I-I 2, e = P ' H 2 ~  

pv 2, 0 = ( T - - T o ) / A T  and • = ( C - C o ) / A C  (where 
H is the cavity height and v the kinematic viscosity 
of the fluid), the macroscopic conservation equations 
describing transport phenomena in the cavity are: 

V" ~" = 0 (3) 

e t3t ÷ (V" V) ~" 

= - - Q P + ( G r T O + G r s O ) f ¢ - -  D ~ ' + A V E V  (4) 

00  ~ ~ 1 
+ V'VO = ~rrRkV20 (5) o '~-  

80 ~ ~ 1 
+ V-V~ = ~ccV2~ (6) 

where GrT = (g f lTATH3) /v  2 and Grs = (g f l cACH3) /v  2 
are the thermal and the solutal Grashof numbers, 
respectively. D a =  K / H  2 is the Darcy number, 
Pr = v/u the Prandtl number, Sc = v /D the Schmidt 
number and the ratio Le  = S c / P r  the Lewis number 
(see nomenclature). Equation (4) stands for the 
Darcy-Brinkman momentum equation where, 
according to Lauriat and Prasad [32] the Forchheimer 
inertia term has been neglected since in all the com- 
putations performed in this study, the Reynolds num- 
ber defined by: 

pvK 1/2 
R e  = (7) /1 

is less than unity. The source term in the momentum 
equation is written in terms of the fluid Grashof num- 
bers, but the porous thermal Rayleigh number Ra*,  
defined as: R a * =  D a .  Pr" Grx will be used in the 
analysis of the results. 

A is the ratio of the viscosity in the Brinkman term 
to the fluid viscosity. Lundgren [33] has computed 
values for the effective viscosity in several con- 
figurations of porous media. He found that the ratio 
A was a function of the porosity. In a very recent 
paper, Gilver and Altobelli [34] determine exper- 
imentally the effective viscosity by using a NMR tech- 
nique. The effective viscosity appears to be insensitive 
to flow rate when the Reynolds number is less than 
20. tr and Rk are the ratios of the thermophysical 
properties of the porous medium and of the fluid, for 
the specific heat tr = (pC)m/(pc)f and for the thermal 
conductivity Rk = km/kr, respectively. The average 
heat and mass fluxes at the walls are given in dimen- 
sionless terms by the Nusselt and the Sherwood 
numbers: 

80  O0 

3. N U M E R I C A L  M E T H O D  

The finite volume method [35] is used to discretize 
the governing equations (3)-(6). As a consequence of 
the very thin solutal boundary layers to be expected 
in such problems, irregular grids are used: the size 
and distribution of the nodes are depending on the 
range of parameters, and it has been checked that at 
least five nodes are present in the thinnest boundary 
layer. In the square cavity (A = 1), the simulations 



1366 B. GOYEAU et al. 

Table 1. Average Nusselt number for N = 0 at A = 1 (Darcy 
model: Da <~ 10 7)t 

Ra* 100 200 500 1000 

Present work 2.08 3.04 4.94 7.05 
Lauriat et al. [32] 2.08 3.03 4.92 7.02 
Prasad et al. [37] 2.06 3.01 4.96 7.25 

t The Rayleigh and Nusselt numbers are built on L. 

are generally performed using a 64 x 64 sinuso~dal grid 
for moderate solutal Rayleigh numbers (see section 4) 
and a 145 x 95 sinusoidal grid at high solutal Rayleigh 
numbers. The discretization technique is well-known 
and a detailed description is not  needed: only the main 
characteristics are presented hereafter. The integral 
equations are discretized using the hybrid scheme of 
Patankar and Spalding [35], and the linear systems 
derived from the conservation equations are solved 
using a line by line procedure, allowing for the use of  
a fast tridiagonal matrix algorithm (TDMA). As the 
momentum equation is formulated in terms of  the 
primitive variables (velocity and pressure) the iterative 
procedure includes a pressure correction calculation 
method to solve the pressure-velocity coupling. The 
code uses the classical SIMPLE technique [35] for the 
pressure and velocity correction. The convergence cri- 
terion is based on the average residue of  the continuity 
equation on the whole domain and convergence is 
reached when this residue is less than 10 -6 . The 
numerical results presented in this paper have been 
performed on a Cray-C98 vectorial computer.  An 
excellent level of  vectorization of  the code (95% of 
the execution in the vectorial mode) has been obtained 
by vectorizing the central TDMA, where most of  the 
C P U  time is spent. 

The validation of  the numerical code has been per- 
formed over a large range of  parameters for purely 
thermal natural convection in porous media: some 
comparison results are presented hereafter, for the 
Darcy model (Table 1), and for the extended Brink- 
man formulation (Table 2). It may be seen from the 

results that the agreement with reference solutions 
available in the bibliography [32, 36] is excellent for 
both regimes. 

Results concerning mass transfer due to purely ther- 
mal natural convection (N = 0) are presented in Table 
3 for Le  = 10. In this configuration, the solutal buoy- 
ancy force is not present, but mass transfer is induced 
by the thermally driven flow. As the Lewis number is 
larger than 1, the mass transfer is higher than the 
corresponding heat transfer. To our knowledge, the 
only available results in this configuration have been 
proposed by Trevisan and Bejan [25], and the cal- 
culated values of  the Nusselt and Sherwood numbers 
are compared in Table 3. The discrepancy between the 
results is particularly significant at the higher values of  
the Rayleigh number (Ra* = 400). As a consequence 
of  the good validation of  our code in this range of  
parameters for the pure thermal case (which is still the 
case at N = 0), it seems that the results proposed 
in ref. [25] somewhat overestimate the Nusselt and 
Sherwood numbers. 

More results concerning the Darcy model in the 
N = 0 situation on a range of  Le  and Ra* values are 
displayed in Table 4. As expected, the Nusselt number 
does not depend on the Lewis number for a given 
Ra*, since the flow is totally driven by the thermal 
buoyancy force. On the other hand, the Sherwood 
number is clearly seen to increase with increasing Le 

or Ra* numbers. The mass transfer results are plotted 
on Fig. 1 as a function of  Ra* × Le. Our results are in 
close agreement with the scaling law derived in [25], 
which leads to: 

Sh ~ (Ra*Le)1:2 (9) 

since the power law deduced from the computed 
values of  the Sherwood number gives: 

Sh = 0.40(Ra* Le) T M  . (10) 

Finally, the numerical simulations of  thermosolutal  
natural convection at high values of  the Darcy number 
(Da ~ 1) give the same results as those previously 
obtained in fluids [37]. 

Table 2. Average Nusselt number for N = 0 at A = 5 (Darcy-Brinkman model) 

Da 10 -7 10 5 10-4 10 3 10 2 

Ra* = 500 Present work 10.39 10.34 10.00 9.13 7.29 
Lauriat et al. [32] 10.40 10.25 9.95 9.15 7.25 

Ra* = 1000  Present work 15.19 14.99 14.28 12.55 9.44 
Lauriat et al. [32] 15.15 14.90 14.30 12.60 9.45 

Table 3. Average Nusselt and Sherwood numbers (N = 0, Le = 10, A = 1) 

Ra* 100 200 400 1000 2000 

Nu Present work 3.11 4.96 7.77 13.47 19.90 
Trevisan and Bejan [25] 3.27 5.61 9.69 - -  - -  

Sh Present work 13.25 19.86 28.41 48.32 69.29 
Trevisan and Bejan [25] 15.61 23.23 30.73 - -  - -  
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Table 4. Average Nusselt and Sherwood numbers (Darcy model: N = 0, A = 1) 
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Ra* Le Nu Sh Ra* Le Nu Sh 

1 1.98 1.98 1 8.93 8.93 
10 1.98 8.79 10 8.93 33.27 

50 - -  - -  - -  500 20 8.93 46.77 
- -  - -  - -  50 8.93 72.17 
100 1.98 27.97 100 8.93 99.23 

1 3.11 3.11 1 13.47 13.47 
10 3.11 13.25 10 13.47 48.32 

10C 20 3.11 18.89 1000 20 13.47 67.45 
50 3.11 29.72 50 13.47 103.10 
100 3.11 41.53 100 13.47 140.65 

1 4.96 4.96 1 19.90 19.90 
10 4.96 19.86 10 19.90 69.29 

200 20 4.96 28.17 2000 20 19.90 96.03 
50 4.96 44.00 50 19.90 145.32 
100 4.96 61.09 100 19.90 196.62 

10 a 

10 2 

10 ~ 

10 0 
10 z 

-C;herwood number 

I l l ] l l l  JJll l l l  . . . . . . .  ; ; ; ; ; ; ;  
l l l l [  IIIIII 

11111]1 ,-illllll 

! l l t l l l  , . . . . . .  

.- l l l l l l l  IIIIIII  
I I IL~f  I I I I  I IIIILI 

IIIItl  k4F II I I [ l l l l  

i ! i l i i [ i l  . . . . . . .  I L Ill I Itllll I III I III 
II i]lJ 

I1[1111 o Ra'=100 lilllll tllllll ILILIII • Ra" = 500 
L~ Ra* = 1000 
x Re" = 2000 

. . . . .  Co~elat ion (Eq. (10)) 

10 3 1 0  4 1 0  s 1 0  6 

Ra* Le 
Fig. 1. Mass transfer by thermal natural convection (Darcy model; A = 1; N = 0). 

4. N U M E R I C A L  R E S U L T S  

The numerical  code described above  has  been used 
to per form a nTJmber of  s imulat ions concerning 
double  diffusive rLatural convect ion in homogeneous  
and  isotropic porous  media.  The range of  parameters  
that  has been examined in this study concerns the N > 0 
domain  (cooperat ing buoyancy  forces). The value of  
N has been generally taken between 0 and  50 for 
different values of  the thermal  Rayleigh n u m b e r  Ra*, 
ranging f rom 100 to 1000. All the s imulat ions are 
performed in the range Le > 1: relatively high values 
of  Le have been used, between 10 and  300. The o ther  
parameters  have been kept  constant :  the aspect rat io  
of  the enclosure (A = 1), the Prand t l  n u m b e r  of  fluid 
(Pr = 10), as well as the porous  med ium propert ies  

(A = 1, a = 1 and  Rk = 1). The Br inkman  extended 
Darcy  model  has  been used th rough  the study: in a 
first step, the Darcy equa t ion  is used (corresponding 
to a Darcy n u m b e r  Da ~ 10-7), then the influence of  
the Br inkman  term due to increasing viscous forces 
(Da = 10-5-10 -3) is analyzed. Due to the large num- 
ber  of  parameters ,  and  in order  to separate the influ- 
ence on  heat  t ransfer  and  on  mass transfer,  the results 
are first presented in terms of  the Sherwood number ,  
and  then the heat  t ransfer  characterist ics are analyzed. 

4.1. Mass transfer 
In this section, the influence of  the governing par-  

ameters  on  mass t ransfer  (the average Sherwood num-  
ber  at  the vertical walls) is analyzed in the range N > 1 
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Sherwood number 
lO  s 

lO  2 

lO  ~ 
lO  0 

L 

m 

• I 

1 0 1  10 a 

• I~" : I00 

• Ra*  = 1000  

N 

Fig. 2. Sherwood number as a function of the buoyancy ratio (Le = 10 ; Ra* = 100 and 1000, A = 1). 

and Le > 1. Since the solutal buoyancy force is dom- 
inating over the thermal one, and the thermal diffu- 
sivity is larger than the molecular diffusivity, this con- 
figuration belongs to the 'mass transfer driven' flow 
identified in the analysis by Trevisan and Bejan [25]: 
assuming the boundary layer approximation, these 
authors show that the relevant parameter for scaling 
the solutal boundary layer thickness in the Darcy 
regime, and thus the mass transfer, is the modified 
solutal Rayleigh number (Ra*LeN). The scale analy- 
sis [25] leads to: 

Sh .~ (Ra*LeN) j/2 (11) 

a correlation which is strictly analogous to the Nu- 
Ra* correlation in thermal convection. This section is 
dedicated to the analysis of the numerical results in 
this situation, and of the influence of the viscous term 
in the Darcy-Brinkman model. 

4.1.1. Darey model (Da ~< 10-7). In the simulations 
presented hereafter, we first analyze the influence of 
the buoyancy number, N ranging from 2 to 30. At 
Le = 10, the results displayed in Fig. 2 have been 
obtained for two values of the modified thermal 
Rayleigh number: Ra* = 100 and Ra* = 1000. As 
expected, it appears on the graph that the Sherwood 
number increases with N and Ra* : this confirms the 
fact that the global buoyancy term in the momentum 
equation, Grx(®+NCb), increases with Grx and N, 
enhancing the flow velocity and the overall transfer. 

At Ra*= 100 (Fig. 3), results are obtained for 
different values of the Lewis number, Le = 30 and 
Le = 30C The mass transfer is seen to increase with 
the Lewis number for given N and Ra*. Indeed, the 

Lewis number is increased through the Schmidt num- 
ber (Pr is fixed), which directly reduces the solutal 
boundary layer thickness, and leads to a higher Sher- 
wood number. The results displayed in Figs. 2 and 3 
also show the power law dependence of the Sherwood 
number with N. 

Using these first observations, the numerical results 
obtained on the whole range of parameters given 
above are displayed in Fig. 4 as a function of the 
solutal Rayleigh number (Ra*LeN): it is clear that 
the relevance of this parameter to correlate the mass 
transfer results and the power-law dependence a r e  

confirmed by the computations. A regression of the 
results---expecting the lower values of N where the 
solutal buoyancy force is not fully dominating the 
flow--leads to the following correlation: 

Sh = 0.75(Ra*LeN) T M  (12) 

where the exponent is in fairly good agreement with 
the value 1/2 assessed by the scale analysis. 

As a matter of fact, the lack of continuity between 
the scaling laws given by correlation (10) when N = 0 
and equation (12) when N >> 1 suggests to propose a 
more general correlation, which could be used on the 
whole N range. Considering the expression of the 
source term in the Darcy equation : Grr(O + NO), we 
may retain Grx(N+ 1) as an order of magnitude of the 
driving term, and propose a correlation as a function 
of Ra*Le(N+ 1), which would satisfy both limits (the 
same proposal has been made in [25] to account for 
the singularity at N = - 1). The results obtained on 
the whole range of parameters (including N = 0) con- 
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Sherwood number 
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10 2 

101 

• Le=30  
• Le = 300 

10  0 101 10  2 

N 

Fig. 3. Sherwood number as a function of the buoyancy ratio (Ra* = 100; Le = 30 and 300, A = 1). 

Sherwood number 
lO a 

10 2 

101 

10 a 10 4 10  s 

Le= 10, Ra*= 100 
Le = 30,  Ra*= 100 
Le= 100, Ra*= 100 
Le = 300, Ra* = 100 
Le = 10, Ra*= 1000 
Correlation (Eq. (12)) 

10 6 10  r 

Ra* Le N 
Fig. 4. Sherwood number vs the solutal Rayleigh number (Darcy model; A = 1). 

sidered in this par~tmetric study are plotted in Fig. 5, 
and the following correlation is obtained: 

Sh = 0.54(Ra*Le(N+ 1)) °48. (13) 

Again, the exponent is clearly in the range expected 
from the scaling laws. 

4.1.2. Darcy-Br;nkman model. In this section, the 

influence of  the Darcy number is investigated. For  
given values of  Le and Ra*, and N varying from 2 to 
30, increasing values of  Da are chosen, from l 0  -7  (the 
Darcy regime) to 10 -3. The results for Ra* = 100 at 
Le = 100 are represented in Fig. 6. 

In the field of  purely thermal natural convection, it 
is now well-known (see for instance [32]) that the heat 
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Sherwood number 
103 I 

i 

102 I I J 

l _ j  r 

101 / T  
10 3 10 4 

~ J  

I I  r I I I I  

A 

I I I I I  

Illll 

Q Ra*= 200,  N = 0 
[ ]  R a * = 5 0 0 ,  N =  0 

Ra*= 1 0 0 0 , N =  0 
A Ra* = 2000, N = 0 
• Ra*= 100, Le= 10 
• Ra*= 100, Le= 30 
• Ra*= 100, Le= 100 
• Ra* = 100, Le = 300 

Correlation (Eq. (13)) 

10 s 10 s 

(N+ I) Ra* Le 
Fig. 5. Mass transfer in the Darcy regime as a function of the dimensionless group (N+ 1) Ra* Le. 

Sherwood number 
lO 3 

10 2 
. ~ r "  

I1"" 

• )-  

p.  
s 

• 0 "  

s 

i . . .  ,,I | - ' i ' ' ]  " ' ' "  
I . .o . - ' ' - -  

• D a  = e - 7  

• Da = e-5 
• Da = e-3 

10 ~ 
10 0 101 10  2 

N 
Fig. 6. Variation of mass transfer with N: influence of the Darcy number (Ra* = 100; Le = 100; A = 1). 

transfer decreases with increasing Darcy numbers, 
and that the rate of  decrease is more significant at 
higher Rayleigh numbers. A similar behavior may be 
expected for mass transfer in mass driven thermo- 
solutal convection. Indeed, increasing the Brink- 
man term implies that the balance between the Darcy 
term and the buoyancy force in the boundary layer is 

progressively replaced by a viscous force vs buoyancy 
term balance at high Darcy numbers, reducing the 
velocity on this scale [1]. An interesting feature of  
these results is that the linearity of  the log (Sh) vs 
log (N) graphs is verified for all the situations rep- 
resented on the figure, and that the slope depends on 
the Darcy number. 
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If  we refer to the results presented in the previous 
section, the correlalion between the Sherwood number 
and the solutal Rayleigh number when Da is increased 
is expected to shift f rom a porous medium behavior 
(that is, a [Ra*Le(N+ 1)] 1/2 law) to a fluid behavior 
(a 1/4 power law). Figure 7 gives a representation 
of  the results obtained for (Ra* = 100 at Le = 100), 
( Ra*= 1000 at L e =  10) and ( R a * =  100 at 
Le = 300). The influence of  Da on the power law is 
clearly seen on the plot : the slope varies from 0.48 at 
D a =  10 -7  to 0.32 at D a =  10 -5 and 0.26 at 
Da = 10 -3. m correlation giving explicitly the influ- 
ence of  the Darcy number on both the exponent and 
the cofactor has still to be found, and more com- 
putations are necessary to investigate the influence of  
Da for fixed values of  GrT on a wider range of  Darcy 
numbers. 

The effect of  the viscous forces accounted for in the 
Brinkman term on the flow velocity is illustrated in 
Fig. 8. The different fields corresponding to N = 10, 
Ra* = 100 and Le = 10 are represented in Fig. 8(a) 
tbr Da = 10 -7 and Fig. 8(b) at Da = 10 -3. The 
streamlines show that the dynamic boundary layers 
are thicker for the'. higher value of  Da, and conse- 
quently the concentration gradients at the walls are  

smaller when the Brinkman term becomes significant. 
The concentration field present the classical stratified 
structure of  the natural convective flows in enclosures, 
but the isotherms show a different behavior of  the 
temperature field: tbr studying the heat transfer, it is 
clear that the boundary layer analysis is not adapted. 
It is interesting to note that this feature is similar 

to the observations made for thermosolutal natural 
convection in fluids for a certain range of  buoyancy 
ratio and thermal Rayleigh numbers. 

4.2. Heat transfer 
As far as heat transfer is concerned, the influence 

of  the governing parameters on the Nusselt number 
has been analyzed by Trevisan and Bejan [25] who 
proposed scaling laws in the range of  moderate Lewis 
numbers and mass transfer driven flows (N >> 1). The 
scale analysis leading to equation (11) for mass trans- 
fer yields: 

/" N \ I / 2  

N u ' ~ ( R a * ~ e e )  . (14) 

The overall increase of  the average heat transfer due 
to Ra* or N is expected, because both parameters 
directly contribute to enhance the buoyancy term in 
the momentum equation, and thus the convective heat 
transfer. The Nusselt number decrease with Le is due 
to the fact that: 

6T/6C "~ Le. (15) 

Then, as the solutal boundary layer thickness is known 
to decrease as Le -~/2, the thermal boundary layer 
thickness is a function of  Le '/2 and the Nusselt number 
decreases with Le. 

Let us note that in the particular situation w h e r e  

Le = 1, the Nusselt and Sherwood numbers are ident- 
ical, and equations (11) and (14) lead to the same 
expression. 
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Fig. 8. Streamlines, isotherms and isoconcentration lines (Ra* = 100; Le = 10; N = 10; A = 1): (a) 
Da = 10-7; (b) Da = 10 -3 (A~ = 0.046; A0 = 1/17; A~b = 1/17). 
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4.2.1. Influence of  N in the low Le range. F i g u r e  9 
d i sp l ays  the  N u s s e l t  n u m b e r  as  a f u n c t i o n  o f  N for  

d i f ferent  va lue s  o f  Le r a n g i n g  f r o m  10 to  300, a t  
Ra* = 100 a n d  Da = 10 7. I f  one  c o n s i d e r s  the  p lo t  

c o r r e s p o n d i n g  to  t he  Le = 10 resul t s ,  it is c lear  o n  t he  

g r a p h  t h a t  the  p r ec ed i ng  ana lys i s  appl ies .  T h e  set  o f  

resu l t s  o b t a i n e d  a t  Le = 10 in the  D a r c y  reg ime,  for  

Ra* = 100 a n d  1000, a n d  N r a n g i n g  f r o m  5 to 30, 

l eads  to  the  fo l l owing  cor re la t ion :  

[" N \ 0 . 4 8  

Nu=O.76~Ra*~e ) (16) 
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which confirms the scale analysis, and is in excellent 
agreement with equation (12) for Le = 1. 

The influence of N on the average heat transfer 
means that the convective transport of heat increases 
with N. This is well illustrated by the vertical velocity 
profiles in the horizontal midplane displayed in Fig. 10 
for N = 2, 3 and 5 (Ra* = 100, Da = 10 -7, Le = 10). 
Those profiles clearly show that the velocity maximum 
continuously increases, and that the thickness of the 
corresponding boandary layer decreases with N: 
stronger convection, due to a larger buoyancy ratio, 
results in enhance6 heat transfer. 

However this description is shown to hold only 
in a range of moderate Lewis numbers. The results 
displayed in Fig. 9 for different values of Le ranging 
from 30 to 300 (Ra ~ = 100 and Da = 10 -7) show that, 
although the decrease of the Nusselt number with 
increasing Le is verified by the calculations, the 
increase of the ove~Fall buoyancy term through N does 
not necessarily enhance the heat transfer in the cavity. 
This behavior is in contradiction with the scaling law 
expressed by equation (14), and it requires a more 
detailed analysis. 

4.2,2. Influence of N at Le >> 1. Let us consider the 
curve in Fig. 9 corresponding to Le = 100: the Nusselt 
number results displayed in the Darcy regime clearly 
show that Nu is first relatively insensitive to N for 
the very low values of the buoyancy ratio, then Nu 
decreases, undergoes a minimum (here for N ~ 5-6), 
and again slightly increases at higher values of N. 
The same behavio~F may be qualitatively observed for 
Le = 30 or Le = 300. As mentioned earlier when 

examining the results of Fig. 9, the influence of the 
Lewis number is that the overall Nusselt number 
decreases with Le. Furthermore, the N value cor- 
responding to Numm gets larger when the Lewis num- 
ber is increased. 

At Le = 30 however, the initial decrease is preceded 
by a first maximum, showing that this value of the 
Lewis number is intermediate between the present 
behavior, characterizing the 'high Lewis number 
range' and the 'low Lewis number behavior' described 
in the previous section. 

In order to give an interpretation of the behavior 
at a high Lewis number, the vertical velocity profile 
in the horizontal midplane is represented in Fig. 11 
for different values of N in the vicinity of the minimum 
Nusselt number (Ra* = 100, Le = 100, Da = 10-7). 
For N = 2, the reduced velocity profile is represented 
in Fig. 12, together with the temperature and con- 
centration distributions in the z = 0.5 plane. Two dis- 
tinct zones are clearly identified on the velocity 
profiles, which are enlarged on the figure (Fig. 11): 

(1) a thin boundary layer close to the wall and 
(2) a velocity maximum in the core of the flow. 

In the range x < 0.05, it is possible to observe the 
direct influence of N on the vertical velocity scale. The 
boundary layer is mainly due to the solutal buoyancy 
term at the scale of the solutal boundary layer 6c, 
which is of order 10 -2 in the present situation (Fig. 
12). The classical scaling laws apply and the velocity 
scale continuously grows with increasing N. 

Let us note that, although these results correspond 
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to the Darcy regime, the Darcy-Br inkman extended 
formulation has been used in the computations, and 
the no-slip boundary condit ion is retained at the wall. 

If we now refer to the inner part of the enclosure 
(0.05 < x < 0.5), it may be seen (Fig. 12) that the 
local maximum is due to the thermal buoyancy term, 
the influence of which is felt on a much larger x-scale ; 
typically one fourth of the total width. This effect is 
extremely sensitive to the N value, and, as expected, 
this contribution decreases when the solutal buoyancy 
term becomes progressively dominant  through the 
increase of N. 

So, the decrease of the Nusselt number  at low values 
of N is due to the fact that the initial damping of 
the velocity in the core (due to the thermal effect) is 
stronger than the enhancement of the velocity close 
to the wall (due to the solutal one). Then, when the 
contribution of the thermal buoyancy term on the 
velocity field becomes negligible (in this case, around 
N = 5), the heat transfer slightly increases with N due 
to the velocity increase on the ~c scale. Such a behavior 

characterizes the intermediate region between heat 
transfer dominated and mass transfer dominated 
thermosolutal convection. It appears that the plain 
boundary  layer approximation is not  valid in this 
range, where no complete scale analysis is available. 

This local interpretation is confirmed by the obser- 
vations of the flow, temperature and concentration 
fields plotted in Fig. 13 for different values of N 
(Ra* = 100, Le --- 100, Da = 10-7). It may be seen on 
the streamlines that increasing N significantly modifies 
the flow structure: at low N, the whole enclosure is 
affected by the flow, and a boundary  layer regime 
progressively appears with larger N. This modification 
of the flow structure has a direct visible consequence 
on the concentration field, which progressively builds 
up a vertical stratification. Although this transition 
towards a solutally dominated regime corresponds to 
a heat transfer minimum, the consequence on the tem- 
perature field is barely visible: the minimum is seen 
however to coincide with the end of a temperature 
stratification. 
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4.2.3. Influence ~f the Darcy number. The numerical  
results described in the previous section have been 
ob ta ined  in the Darcy  regime, and  we now analyze 

the results ob ta ined  with the D a r c y - B r i n k m a n  model.  
Figure 14 displays the Nussel t  n u m b e r  var ia t ion  with 
N for a given Rayleigh n u m b e r  ( R a * =  100) at  
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Le = 100 and different values of the Darcy number, 
ranging from the simple Darcy model (Da = 10 -v) to 
the Brinkman dominated regime (Da = 10-3). It may 
be seen on the figure that the Nusselt number depen- 
dence on N is extremely sensitive to the Darcy number, 
that is to the influence of the viscous terms in the 
momentum equation. While the decrease of Nu with 
moderate values of N is present for all Da values, it 
may be observed that there is no local Nu minimum 
for the higher values of Da. The existence of this 
minimum seems to be characteristic of the Darcy 
regime (low Da values), and the presence of a dom- 
inating Brinkman term leads to a behavior which has 
been observed for thermosolutal natural convection 
in fluids. At high Lewis numbers [35], it has been 
shown that the Nusselt number tends to a pure con- 
duction limit (Nu ~ 1) when the buoyancy ratio is 
increased. In fluids, this is generally associated to the 
formation of a multicellular regime which has not 
been observed for porous media in the range of para- 
meters spanned by the present study. 

The vertical velocity profiles in the horizontal mid- 
plane displayed in Fig. 15 for N ranging from 2 to 
15 (same parameters as previously, and Da = 10-3), 
show the typical features of the flow in this range. 
First, as expected from the influence of the viscous 
term, the velocity is much smaller than in the Darcy 
regime. Then, the influence of the Brinkman term is 
such that the solutally and thermally driven flows 
merge together and that the influence of the thermal 
contribution in the buoyancy term is felt at much 
larger values of N than in the Darcy regime (Fig. 16). 

5. C O N C L U S I O N  

The results presented in this paper show the main 
trends of thermosolutal natural convection in porous 
media. This contribution completes some obser- 
vations on the Darcy regime already mentioned in 
previous studies. It brings out original results on the 
influence of the Darcy number when the Brinkman 
extension of the Darcy model is used. 

It is shown that the numerical results for mass trans- 
fer arc in excellent agreement with the scaling analysis 
over a very wide range of parameters. Heat transfer 
results show that boundary layer analysis is not suit- 
able method to predict the correct scales for heat 
transfer in the same domain: as a conclusion of the 
analysis presented herein, it is clear that more inves- 
tigation is required to derive the appropriate scaling 
laws in the domains where the flow is not fully domi- 
nated either by the thermal or by the solutal com- 
ponent of the buoyancy force. 

This work also states the specific behavior of 
thermosolutal flows in porous media: first, the strong 
influence of the Darcy number on heat transfer is 
more complex than in thermal convection, and then 
the behavior of the thermosolutal flow in porous 
media is different from the behavior already assessed 
for fluids. The complete derivation of correlations 
showing the explicit influence of the Darcy number 
has still to be made. 

The present analysis is focused on the influence of 
a limited number of dimensionless parameters: exten- 
sions of this work are presently developed particularly 
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to  analyze  the  inf luence o f  the  aspec t  ra t io  in re la t ion  
wi th  the  exis tence c f  mul t ice l lu lar  regimes.  
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